Local and non-local dependency learning and emergence of rule-like representations in speech data by deep convolutional generative adversarial networks
نویسندگان
چکیده
This paper argues that training Generative Adversarial Networks (GANs) on local and non-local dependencies in speech data offers insights into how deep neural networks discretize continuous symbolic-like rule-based morphophonological processes emerge a convolutional architecture. Acquisition of has recently been modeled as dependency between latent space generated by GANs Beguš (2020b), who models learning simple allophonic distribution. We extend this approach to test phonological include approximations morphological processes. further parallel outputs the model results behavioral experiment where human subjects are trained used for GAN network. Four main conclusions emerge: (i) provide useful information computational acquisition even if comparatively small dataset an artificial grammar experiment; (ii) easier learn than processes, which matches both typology world’s languages. also proposes (iii) we can actively observe network’s progress explore effect steps representations keeping constant across different steps. Finally, shows (iv) network learns encode presence prefix with single variable; interpolating variable, operation process. The proposed technique retrieving general implications our understanding suggests rule-like generalizations represented interaction variables space.
منابع مشابه
High-Resolution Deep Convolutional Generative Adversarial Networks
Generative Adversarial Networks (GANs) [7] convergence in a high-resolution setting with a computational constrain of GPU memory capacity (from 12GB to 24 GB) has been beset with difficulty due to the known lack of convergence rate stability. In order to boost network convergence of DCGAN (Deep Convolutional Generative Adversarial Networks) [14] and achieve good-looking high-resolution results ...
متن کاملUnsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adve...
متن کاملAutomatic Colorization with Deep Convolutional Generative Adversarial Networks
We attempt to use DCGANs (deep convolutional generative adversarial nets) to tackle the automatic colorization of black and white photos to combat the tendency for vanilla neural nets to ”average out” the results. We construct a small feed-forward convolutional neural network as a baseline colorization system. We train the baseline model on the CIFAR-10 dataset with a per-pixel Euclidean loss f...
متن کاملGlobal and Local Consistent Age Generative Adversarial Networks
Age progression/regression is a challenging task due to the complicated and non-linear transformation in human aging process. Many researches have shown that both global and local facial features are essential for face representation [1], but previous GAN based methods mainly focused on the global feature in age synthesis. To utilize both global and local facial information, we propose a Global...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Speech & Language
سال: 2022
ISSN: ['1095-8363', '0885-2308']
DOI: https://doi.org/10.1016/j.csl.2021.101244